
Seeing double: Designing drugs that target twin cancer proteins Scripps Research scientists used knowledge about a protein to characterize drugs that selectively bind to its twin, or paralog.
September 30, 2024
LA JOLLA, CA Some proteins in the human body are easy to block with a drug; they have an obvious spot in their structure where a drug can fit, like a key in a lock. But other proteins are more difficult to target, with no clear drug-binding sites.
To design a drug that blocks a cancer-related protein, Scripps Research scientists took a hint from the protein's paralog, or twin. Using innovative chemical biology methods, the scientists pinpointed a druggable site on the paralog, and then used that knowledge to characterize drugs that bound to a similar but more difficult to detect spot on its twin. Ultimately, they found drugs that only bound to the protein of interest and not its highly similar sibling.
Their approach, described in Nature Chemical Biology on September 18, 2024, and dubbed paralog hopping, could uncover new binding sites for drugs and inform drug development more broadly, since nearly half of the proteins in human cells including many involved in cancer and autoimmune diseases have such paralogs.
This method may be generally useful in cases where you have paralogs, and you are trying to find a new drug for one of them, says senior author Benjamin Cravatt, PhD, the Norton B. Gilula Chair in Biology and Chemistry at Scripps Research. Being able to target one paralog over another is an important goal in drug development, as two paralogs often have different functions.
Many genes have duplicated throughout evolution, resulting in multiple copies in the human genome. In some cases, copies have evolved slightly different sequences from each other, making their corresponding proteins into paralogs. These protein paralogs remain highly similar in structure and often have redundant or overlapping functions within cells.
In recent years, Cravatt's research team formulated an approach to develop drugs that bind to the amino acid cysteine a protein building block with unique, highly reactive chemical properties. The scientists' method takes advantage of cysteines as an optimal site for drugs to attach to a protein permanently, often inactivating it. However, not all proteins have accessible cysteines. In the cases of paralog pairs, one protein may have a druggable cysteine that the other does not.
We started with this idea that if you know how to drug one protein, you can figure out how to drug its paralog in a similar way, says Yuanjin Zhang, a graduate student at Scripps Research and first author of the new paper.
As a test case, the team tackled the paralog pair known as CCNE1 and CCNE2. Both proteins have been found to be overactive in breast, ovarian and lung cancer. However, scientists suspected that the two proteins play slightly different roles. The team posited that turning off just one protein could make treating some cancers more effective.
It has been difficult, however, to design drugs that target the CCNE1 and CCNE2 proteins to test this hypothesis. Cravatt, Zhang and their colleagues knew that CCNE2 had a druggable cysteine, while CCNE1 did not. If they could identify drugs that bound to the same spot on CCNE1, even in the absence of a cysteine, they suspected the protein would shut off.
The scientists first engineered a cysteine into CCNE1, mimicking the drug-binding spot they had pinpointed in CCNE2. They then leveraged this neo-cysteine to identify drugs that bind to CCNE1. Next, they screened a library of other chemical compounds for the ability to compete with that drug in binding to CCNE1. The team reasoned that some of the compounds that competed for the same spot would bind in ways that did not rely on the cysteine.
Indeed, Cravatt, Zhang and their colleagues discovered multiple compounds that could bind to the same site on CCNE1 even when the cysteine was removed again. Some compounds did not bind to CCNE2. Some also had opposite functions, stabilizing the molecule so that it might be more active than usual, rather than inactivating it. Structural studies revealed that the CCNE1 compounds bind to a cryptic pocket that was not previously known to be druggable.
The team says the approach highlights the importance of screening for drugs in diverse, creative ways.
If we had just screened looking for compounds with a particular function, we would not have identified all of these various functional molecules, and if we had just looked at the structure of CCNE1, we would not have found this binding pocket at all, says Zhang.
More research is needed to discover whether the new compounds have potential utility in treating cancer or other diseases in which CCNE1 plays a role. Next, the scientists plan to apply their paralog-hopping method to other pairs of proteins important for tumorigenesis.
In addition to Cravatt and Zhang, authors of the study, An allosteric cyclin E-CDK2 site mapped by paralog hopping with covalent probes, include Zhonglin Liu, Sang Joon Won, Divya Bezwada and Bruno Melillo of Scripps Research; and Marsha Hirschi, Oleg Brodsky, Eric Johnson, Asako Nagata, Matthew D. Petroski, Jaimeen D. Majmudar, Sherry Niessen, Todd VanArsdale, Adam M. Gilbert, Matthew M. Hayward, Al E. Stewart and Andrew R. Nager of Pfizer, Inc.
This work was supported by funding from the National Cancer Institute (R35 CA231991) and Pfizer.
Chemistry Cravatt, Benjamin
More from Scripps
25/03/2025
Low-sugar' vaccine can provide broad immunity against coronavirus variants Scripps Research chemistry professor Chi-Huey Wong presents results from his team...
21/03/2025
How scientists uncovered memory's hidden architecture New structural hallmarks of memory storage discovered by Scripps Research could lead to treatments for...
11/03/2025
Compound found in common herbs inspires potential anti-inflammatory drug for Alzheimer's disease Scripps Research scientists created a stable form of carnos...
04/03/2025
How a crucial DNA repair protein works-and what it means for cancer treatment New structural blueprint is key for better targeting cancer cells, particularly th...
28/02/2025
How air pollution and wildfire smoke may contribute to memory loss in Alzheimer's disease Scripps Research scientists discovered how a chemical modification...
07/02/2025
Collaboration awards enable scientists to design new medicines, more precisely edit DNA and fight drug-resistant bacteria Scripps Research announces its 2024 re...
29/01/2025
Researchers illuminate new structures of a critical amyloid protein Insights could advance new drugs to treat the progressive, fatal disease known as transthyre...
24/01/2025
Long-acting injectable malaria drug enters first-in-human study Calibr-Skaggs' long-acting injectable (LAI) platform transforms oral malaria treatment atova...
04/01/2025
Virtual chemistry speeds up drug discovery By using computer modeling to predict chemical reactions, Scripps Research scientists were able to synthesize 25 vari...
17/12/2024
Brain cells remain healthy after a month on the International Space Station, but mature faster than brain cells on Earth Scripps Research scientists reveal micr...
10/12/2024
Scripps Research scientists create AI that watches videos by mimicking the brain A new, more sustainable AI model recognizes visual scenes by mirroring brain ...
06/12/2024
Scripps Research scientists identify mutation that could facilitate H5N1 bird flu virus infection and potential transmission in humans New findings underscore...
05/12/2024
Scripps Research scientists receive up to $12M to create universal vaccine for alphaviruses Funding from ARPA-H will be used to develop a vaccine for alphavirus...
19/11/2024
Researchers use biophysics to design new vaccines against RSV and related respiratory viruses Scripps Research scientists improved existing vaccines by analyzin...
30/10/2024
Calibr-Skaggs announces initial dosing of a first-in-class regenerative lung medicine in a phase 1 trial for idiopathic pulmonary fibrosis CMR316 is a once-week...
24/10/2024
Human mini-brains reveal autism biology and potential treatments By creating personalized brain organoids in the lab, Scripps Research scientists showed how ...
16/10/2024
Scripps Research scientists discover chemical probes for previously undruggable cancer target Scientists uncover how small molecules interact with a cancer-re...
02/10/2024
Professor Stuart Lipton awarded $5 million to study the chemical biology of air pollution on the human brain The grant from the NIA/NIH will support research in...
01/10/2024
Seeing double: Designing drugs that target twin cancer proteins Scripps Research scientists used knowledge about a protein to characterize drugs that selectiv...
27/09/2024
Scripps Research scientist Ilia Droujinine receives over $3 million to reveal the body's interorgan networks The awards from the NIDDK and the LLHF will let...
20/09/2024
Genetic tracing at the Huanan Seafood market further supports COVID animal origins An international collaboration between Scripps Research, University of Arizon...
12/09/2024
Scripps Research scientists expand the genetic alphabet to create new proteins The novel method uses sets of four RNA nucleotides rather than the natural three ...
27/08/2024
New way to potentially slow cancer growth Using a combination of two protein-mapping methods, Scripps Research scientists uncover novel proteins that could be t...
22/08/2024
Gut molecule slows fat burning during fasting Scripps Research scientists discovered a molecule produced by roundworm intestines that signals the brain to slow ...
14/08/2024
Using wrist-worn activity trackers to help patients reduce long COVID symptoms New Scripps Research trial aims to validate the use of wearables in guiding parti...
09/08/2024
Scripps Research chemists develop new sustainable reaction for creating unique molecular building blocks The building blocks can be used to create polymers with...
26/07/2024
Timing matters: Scripps Research study shows ways to improve health alerts Wearable health sensors are a powerful tool in disease detection and in stemming the ...
17/07/2024
New sleep study aims to understand cognitive decline in women Scripps Research launches digital trial to identify sleep-related risk factors for Alzheimer's...
11/07/2024
Researchers identify brain region involved in oxycodone relapse Study by Scripps Research scientists suggests future therapies for opioid and alcohol addiction....
11/07/2024
Researchers pinpoint brain cells that delay first bite of food A set of neurons identified by Scripps Research scientists influence the start of eating and drin...
09/07/2024
Nine new faculty join Scripps Research The newly appointed faculty are making transformative discoveries in areas ranging across drug discovery, neuroscience, c...
04/07/2024
Drug-like inhibitor shows promise in preventing flu Scripps Research scientists have developed a potential drug-like molecule that blocks the first stage of typ...
03/07/2024
Advancing toward a preventative HIV vaccine Across four preclinical studies, Scripps Research, IAVI, and additional collaborators make headway in stimulating th...
21/06/2024
Neuroscientist Xin Jin granted Pew and McKnight awards Jin is named a 2024 Pew Scholar and receives the McKnight Scholar Award, supporting her research in mappi...
04/06/2024
Esteemed life sciences attorney Barbara Kosacz joins Scripps Research Board of Directors
June 03, 2024
LA JOLLA, CA Scripps Research's vision to translat...
24/05/2024
Scripps Research's Skaggs Graduate School awards doctoral degrees to 32nd graduating class Skaggs family also honored at commencement ceremony as first reci...
23/05/2024
Scripps Research scientists uncover new molecular drivers of Alzheimer's By recording detailed electrical and protein measurements of individual brain cell...
21/05/2024
New method to reveal what drives brain diseases Scripps Research scientists develop CRISPR screen technology to determine disease mechanism from tissues with ac...
20/05/2024
Scripps Research chemists develop new method for making gamma chiral centers on simple carboxylic acids C-H activation-based method should speed drug molecule ...
17/05/2024
Scripps Research chemist Donna Blackmond elected to the Royal Society of the U.K. Blackmond's wide-ranging work has shaped origin of life theories, our unde...
08/05/2024
Professor emeritus John (Jack) Johnson elected to the National Academy of Sciences Johnson's multi-disciplinary research has been instrumental in shaping ou...
03/05/2024
TIME100 Health list features Scripps Research Executive Vice President Eric Topol New list honors 100 individuals who most influenced global health in 2024.
M...
02/05/2024
New technique improves T cell-based immunotherapies for solid tumors Scripps Research scientists help T cells more effectively kill solid tumors cells in vitro ...
20/04/2024
New copper-catalyzed C-H activation strategy from Scripps Research Two-mode reactions inspired by human detox enzymes offer powerful new tools for drug discover...
12/04/2024
Scripps Research study reveals new approach for combating resting bacteria Blocking long phosphate molecules could eventually help treat chronic infections in...
06/04/2024
A simple, inexpensive way to make carbon atoms bind together A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules,...
04/04/2024
Developing a vaccine for the zombie drug xylazine Scripps Research chemical biologists design an early proof-of-concept vaccine that could lead to the first...
30/03/2024
How blocking a neural receptor responsible for addiction could reduce alcohol use A Scripps Research team found that a new therapeutic that targets the kappa op...
13/03/2024
New computational strategy boosts the ability of drug designers to target proteins inside the membrane Customized-design approach could streamline the design of...
29/02/2024
Scripps Research scientists reveal how first cells could have formed on Earth New phospholipid discovery brings researchers closer to understanding how primordi...